
Solvable lattice models labelled by Dynkin diagrams

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 2301

(http://iopscience.iop.org/0305-4470/26/10/005)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 26 (1993) 2301-2316. Printed in the UK 

Solvable lattice models labelled by Dynkin diagrams 

S Ole Warnaar and Bernard Nienhuis 
Institnut voor Theoretische Fysica, Universiteit van Amsterdam, Valckeniersrraat 6.5, 1018 XE 
Amsterdam, The Netherlands 

Received 1 1  January 1993 

Abstract.  an^ equivalence beween generalized restricted solid-on-solid ( ~ ~ 0 s )  models, 
associated with-sets of graphs. and multi-colour loop models is established. As an application 
we consider solvable loop models and, in this way, obtain new solvable families of critical Rsos 
models. These families can all be classified by the Dynkin diagrams of the simply laced Lie 
algebras. For one of the RSOS models. Labelled by the Lie algebra pair (A',Ad and related to 
the <lJ v e x  model, we give an off-critical extension. which breaks Ihe 2% symmetry of the 
Dynkin diagrams. 

1. Introduction 

In recent years many solutions to the star-triangle or Yang-Baxter equation (YBEj [l] have 
been found. Among these solutions, the A-D-E lattice models, found by Pasquier 121, have 
drawn particular attention. Pasquier showed, in fact, that with any arbitrary graph one can 
associate a solvable restricted solid-on-solid (RSOS) model. Requiring criticality led to the 
restriction to graphs which are Dynkin diagrams of the simply laced A-D-E Lie algebras. 
An important feature of the A-D-E models is that they can all be mapped onto the same 
polygon or loop model, which, in turn, is equivalent to the 6-vertex model. 

Recently, by extending Pasquier's and similar methods of Owczarek and Baxter [3], 
Wamaar et al [4] found a new family of models associated with graphs. Using a different 
approach these same models were also found by Roche [5], who suggested the name dilute 
A-D-E models. Again, the whole family of dilute A-D-E models can be mapped onto a 
single-loop model, the O(nj model [6], which is related to the 19-vertex vertex model of 
Izergin and Korepin [71. 

In this paper we further exploit the relation between RSOS models related to graphs and 
loop models. We define a general multi-colour loop (MCL) model and show its equivalence 
with an RSOS model defined by arbitrary sets of graphs. Then we consider several examples 
for which these models are actually solvable, and find, besides the known A-D-E and 
dilute A-D-E models, new  families of critical RSOS models labelled by Dynkin diagrams. 
As a further generalization we also consider models of mixed loopvertex 'ype. Finally, for 
one of the examples, related to the c*) Lie algebia, we present an off-critical extension. 
This extension has the property that it breaks the & symmetry of the underlying Dynkin 
diagrams. In the appendix we describe the YBE for loop models [8] and show how it relates 
to the YBE for the RSOS model. 

2. Multi-colour loop model 

We consider a square lattice L. Each edge of L can either be occupied by a line segment 
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that has one of C possible colours, or be empty, Line segments of equal colour on adjoining 
edges must form closed polygons or loops. A configuration G is dehed  as a collection of 
coloured loops on L, with the restriction that polygons of the same colour do not intersect. 
An example of a configuration is given in figure 2. The total number of allowed verLices 
V is given by V = 3Cz + 5C + 1. For C = 1 and C = 2 all possible vertices are shown 
in figures l(a) and (b)  respectively. A loop of colour i has fugacity ni and the Boltzmann 
weight of vertex k is given by pk. The partition function of the MCL model is defined as 

S 0 W a r m  and B Nienhuis 

where pi is the total number of loops of colour i and mx the number of vertices of type k. 
For C = 1 the MCL model coincides with the loop model defined in [4]. 

I -'r ~iL 
@), _ _ _ ; _ _ _  A... , ...r l... -...L j ...... 

i 2 3 4 5 6 7 8 9 

A- ...I... ..(I... + $= 
10 1'1 12 13 14 15 

16 17 18 19 20 21 22 23 

Figure 1. (U )  The nine venices of the C = I MCL model and (b) the 23 vertices for the C = 2 
case. 

If the weights PI,  . . . , p6c+1 are all zero, only configurations that densely cover the 
entire lattice give a non-zero contribution to the partition function. Such loop models we 
call dense, as opposed to the so-called dilute loop models which allow for the edges of C. 
to be unoccupied. 

3. The RSOS model 

In this section we define a RSOS model and show that its partition function equals that of 
the MU model. 

3.1. Definition of the model 

Consider an arbitrary connected graph gi. Such a graph consists of a set of Li nodes, 
labelled by an integer height ai E 11. . . . , Li} and a number of bonds between the nodes. 
We do not allow more than one bond between two nodes. Two nodes are called adjacent 
(-) on Gi if they are connected via a single bond. A graph is called simple if it has no 
nodes connected to itself. Examples of simple and non-simple connected graphs are shown 
in figures 4 and 5 respectively. 
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We can represent the graph Gi by an adjacency matrix A' as follows 

(3.1) 

We denote $e largest eigenvalue of A'by A; and the corresponding eigenvector by Si .  

vector a = (al ,  . . . , ac) and define 
We now take C such arbitrary graphs, labelled GI,  . . . , Gc. Let a be the C-dimensional 

where we use the convention that sums and products over i and j always range from 1 
to C. With the above definitions the Boltzmann weight of an elementary face of the RSOS 
model is defined as 

where the ith component of the heighf vectors a, b, c and d can iake any of the Li heights 
on Gi. The generalized Kronecker 6 and the functions k ,  I and m used above are given by 

8p.q  ...., s = n a p , . ,  . . .~P,,, 
1 

k ( i , j )  = (C - l ) i  + j - e ( j  - i) +5C +2 

i(i, j )  = ci + j + C' + 4 ~  + 1 

m(i, j )  = ci+ j + 2 c 2 + 4 c  + I 
(3.4) 

with e the step function: 

(3.5) 

We note that the total number of terms in equation (3.3) is V ,  
are all zero, we call the RSOS model 

dense. For such models, if all adjacency graphs are simple, neighbouring sites of the lanice 
must have different heights. So-called dilute RSOS models allow for neighbouring sites of 
I: to have equal height. 

As will become clear in the following, for dilute RSOS models we require that all C 
adjacency graphs are simple. 

In analogy with the MCL model, if p1, . . . , 



2304 

3.2. MCL-RSOS equivalence 

We now show that the partition function of the RSOS model, given by 
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(3.6) 

where the product is over all faces of the square lattice L, can be mapped onto that of the 
MCL model. The method is a straightforward generalization of  the work of Pasquier [2], 
Owczarek and Baxter 131 and Wamaar et ai [4]. 

As a first step we substitute the expression for the Boltzmann weight (3.3) and expand 
the above partition function into a sum over I," terms, where N is the number of faces 
of the lattice. For each face of L, a given term in the expansion has one of the V terms 
of equation (3.3). These V possible terms can be represented diagrammatically as shown 
in figures I (a)  and (b) for the C = 1 and C = 2 cases, respectively. A line of colour i, 
separating two neighbouring sites with heights a and b respectively, implies 

ai - bi 
ai =hi j # i. (3.7) 

We now have to distinguish between dense and dilute RSOS models. 
For dilute RSOS models, since we do not allow for non-simple graphs, all diagonal 

elements of the C adjacency matrices are zero. Consequently, ai - bi means that ai #hi 
and, hence, that a line separating two neighbouring sites can be viewed as a domain wall 
separating two neighbouring sites with different heights. As a result of this and the 6- 
functions in (3.3). only configurations in which lines of the same colour join together to 
form domain walls separating regions of the lattice with different height give a non-zero 
contribution to the partition function. A typical configuration is shown in figure 2. If we 
had allowed for non-simple graphs, configurations where domain walls would simply end 
somewhere on the lattice would not give a vanishing contribution. 

For dense RSOS models we do not have this complication. A11 edges of the lattice are 
occupied by polygon segments and domain walls therefore cannot end. Besides simple 
graphs, we can now allow for non-simple adjacency graphs as well. If adjacency graph 
Gi is non-simple, a line of colour i separating two neighbouring sites does not necessarily 
separate two sites with different heights. For simplicity we shall still refer to such a line 
as a (local) domain wall. Due to the &-functions we again have that only configurations in 
which lines of the same colour join together to form global domain walls give a non-zero 
contribution to the partition function. 

The partition function is now given as the sum over all configurations G of domain 
walls and a sum over heights consistent with G 

where we have used the factorization property (3.2) of S, and the meaning of a domain 
wall of colour i, as formulated in (3.7). The integer mb,,  denotes the total power of s b , / s ,  

arising from the vertices of type pzc+z, . . . , p4c+i and p ~ p + ~ ~ + 2 ,  . . . , pv, where we count 
the powers of S, /s ,  and sa;/&, separately. 
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Figure 2. A polygon configdon Only Imps of different colour may intersect 

To avoid technical difficulties, we assume that all boundary sites of L: cany the same 
height vector. (For the treatment of other boundary conditions see [2,8].) AI1 domain 
walls then form closed polygons or loops. Polygons may surround other polygons of any 
colour, but can only be intersected by polygons of a different colour. If a polygon of colour 
i is intersected by other polygons, the height vectors immediately inside and outside this 
polygon are not unique. However, the ith component of these vectors does have a unique 
value. We call these the inner and outer heights of the polygon respectively. We now make 
the following decomposition: 

where the labels i and j in the diagrams denote colours. As a result, the total contribution 
to ma,b, - mb,4 of a polygon of colour i, with inner height ai and outer height b; is always 
1. 

We can now perform the summation over the height vectors in (3.8) for each component 
independently. When summing over the i height components, we start with polygons of 
colour i which do not surround other polygons of the same colour. If such a polygon has 
inner height a, and outer height bi, we get 

(3.10) 

The result is that these polygons contribute a factor Ai and that their dependence on the 
outer height bi disappears. Therefore, the summation over the ith height component of 
the regions immediately outside these polygons can now be performed in the same way. 
Repeating this process from inside out, we obtain, after completely summing out the ith 
height component, 

(3.11) 

where pi is the number of polygons of colour i. 
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E we perform the summation for all C height components, and make the identification 
Ai = ni we find that the partition function of the RSOS model is that of the MCL model. 

The equivalence between the partition functions of the MCL and RSOS models holds 
irrespective of the solvability of the models. Clearly, as a consequence of the equivalence, 
if either one of the models is solvable, in the sense that we can compute its partition function, 
the other model is solvable as well, In the appendix we show that if the MCL model satisfies 
the YBE, then, as an immediate consequence, the YBE for the RSOS model also holds. 

4. Solvable examples 

We now consider several special cases for which the MCL model and hence the RSOS model 
is solvable. By a solvable MCL model we mean that it satisfies the YBE for loop models [SI, 
which is described in some detail in section Al. 

Two of these cases are already known in the literature and are only presented for 
completeness. All examples are either 1- or 2-colour loop models. So far we have not been 
able to find any non-trivial solvable MCL model with more than two colours. 

In the appendix we give an altemative equivalence between the M U  model and the 
RSOS model on the level of the YBE. 

4.1. The Temperley-Lieb (TL) loop model 

This dense loop model, which first occurred in the mapping of the q-state self-dual Potts 
model onto the &vertex model [9], is given by equation (2.1) with C = 1. The weights 
pg, . . . , ps of the vertices, shown in figure l(a), and the fugacity nl = f i  are given by 

(4.1) 
sin(?. - U) sin U 

sink sin A 
P I =  ... = m = o  p s =  P 9 = -  nl = 2cosA. 

It is this model for which the equivalence between the RSOS and loop model was first 
established [2, 31. 

4 2 .  The O(n) model 

[61 This is a dilute loop model related to the Izergin-Korepin or A:) vertex model [7]. It 
is the most general I-colour loop model of the form (2.1). Again, the dilute RSOS models 
based on this model have been previously constructed in [5,4]. The Boltzmann weights 
and fugacity of the O(n) model read as follows 

p1 = (sin 2A sin 3A + sin U sin(3A - u))/(sin 2h sin 3h) 

& = p3 = sin(3A - U)/ sin 3h 

p4 = p s  = 61 sin U/ sin 3A 

p.5 = p7 = €2 sin U sin(3A - u)/(sin 2A sin 3A) 

p8 = sin(2A - U) sin(3A - u)/(sinZAsin 3A) 

ps = -sinusin(A-u)/(sinWsin3h) 

nl = -2cos4A 

(4.2) 

where, here and in the following, E :  = €2” = 1. 
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4.3. The Cf) loop model 

Whereas the O(n) model is the natural dilute generalization of the TL model, so the Ct’ 
model can be seen as the simplest non-trivial generalization of the n model to a model with 
more than one colour. It is a dense 2-colour loop model with vertices shown in figure l(b) 
and weights 

p1 = . . . = p i 3  = O  
p14 = P I S  = €2 sin U sin(3A - u)/(sin A sin 3.1) 

016 = p1g = sin(A - U) sin(3A - u)/(sinA sin 3A) 

PI7 = p18 = sin(3A - U)/ sin 3A (4.3) 
pzo = m? = - sin U sin(2A - u)/(sin A sin 3A) 

pzl = & = €1 sin u/sin 3A 

nl =nz = -2cos2A. 
By making an arrow covering of the polygons, as described in section 5, this model maps 
onto the Cil) vertex model of [lo]. 

4.4. The AY) ioop model 

This dilute model, related to the A t ’  vertex model found in [I 1,101, is given by (2.1) with 
C = l a n d  

PI = ps = sin(A - U) f sin A 

p 2 = p 3 = 1  

P4 = P5 = 0 
p6 = m = E I  sin u/  sink 

ps = sinu/sinA 

nl = ~ C O S A . .  

(4.4) 

45 .  The AY’ Ioop model 

This dense 2-colour loop model is related to the At’  vertex model of [ 11.101. The weights 
are given by 

p1 = ... ,713 Z 0 
PI4 = P I S  = € 1  sinu/sinA 

(4.5) 

We remark that, though the AI”-Ay’ vertex models all relate to loop models, this does not 
seem to be true for the A;’’ family [ll, 101 in general. 
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5. Mixed models 

Provided that polygon segments of the same colour do not intersect, each loop model can be 
mapped onto a vertex model [9]. We cover loops of colour i by mows of that same colour, 
such that the loops become oriented. Following a loop in the direction of the arrows, we 
assign a phase factor si to a tum to the left and a factor s;' to a turn to the right, where st 
is defined by nj = si" +sr4. Summing over all possible arrow coverings of a configuration, 
each polygon of colour i acquires a total factor nj. Interchanging the summation over all 
loop configurations and over all arrow coverings, the sum over the loops can readily be 
performed. The resulting partition function is that of a vertex model, where the arrows 
around a vertex obey the ice-rule for each colour independently. 

In general, the inverse of the above mapping is not possible. Only very few solvable 
vertex models, that satisfy an ice-rule, admit a loop interpretation. Nevertheless, many 
vertex models allow for a partial mapping onto a loop model. That is, some vertex degrees 
of freedom can be converted into loop degrees of freedom, but not all. Via the MU- 
RSOS correspondence, these mixed loop-vertex models can be mapped onto RSOS-vertex or, 
equivalently, RSOSSOS models. 

We shall not try to give a complete description of all models that allow such a procedure, 
but give as an example the Ai2' vertex model. For the definition of this 36-vertex model 
we refer to [lo]. The equivalent loopvertex model has 20 vertices, shown in figure 3, with 
weights and fugacity 

S 0 Warnaar and B Nienhuis 

PI = . . . = p4 = €2 sin U cos(2h - u)/(sin hcos 2A) 

ps = p6 = p7 = sin@ - U) cos(2A - u)/(sinA cos2A) 

i 

I 2 3 4 5 6 

...+ ... J... J... ..r 
11 i ...[... _,_I_,_ J i . . i -  

i 8 b 10 
i r -? 

Figure 3. The 20 vertices of the A:' lwpverrex model. 

Via the MCL-RSOS equivalence, this model maps onto a RSOS-Vertex model, where an 
elementary face of the lattice is denoted as 

(5.2) 
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The latin indices label onedimensional height variables and the greek indices the mows. 
We note that two neighbouring sites either have the same height separated by an arrow or 
have different heights. 

To cast this into a somewhat nicer fonn, we make use of the SOS-vertex equivalence 
for icetype models [12] to write this as a RSOS-SOS model. For this purpose we assign 
two-dimensional height vectors a to each site of the lattice. The first component of such a 
vector is one of the heights ai E [ 1,. . . , Ll]. The second component is a height variable 
a1 E Z. Two neighbouring sites of the RSOS-Vertex model, with heights a, and bt separated 
by an arrow, correspond to height vectors a and b of the RSOS-SOS model, with 

(5.3) 

and the convention that the height to the left of the arrow is highest. For two sites of the 
RSOS-vertex model that are not separated by an mow, we get heights a and b, with 

a1 -bl 

a2 = h ~ .  

If we define Ai,b (i = 1,2) and Sa as in equation (3.2). where 

(5.4) 

we finally obtain for the AY’ SOS  model 

(5.5) 

+ (pig - pS - P ~ ~ ) ~ , , , s ~ . ~ A ~ A , Z . ~ ,  

Similarly, we can construct mixed SOS models starting from other vertex models. For 
the solutions of the YBE found in [lo] we get models with height variables that have r 
restricted and U unrestricted components, with r and U listed below 

(5.7) 
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6. A-D-E classification 

All loop models presented in the previous sections are critical when ni < 2. For ni z 2 
the trigonometric functions have to be replaced by hyperbolic functions and the models 
become non-critical and, in some cases, even complex. It is, therefore, natural to restrict 
the graphs Gi of the RSOS models to those that have adjacency matrices A' in which the 
largest eigenvalue Ai is less than or equal to two. In fact, all simple connected graphs with 
Ai < 2 have been classified [I31 and are given by the Dynkin diagrams of the classical and 
affine simply laced Lie algebras, shown in figure 4. For the classical algebras, the largest 
eigenvalue of the adjacency matrix of its Dynkin diagram is given hy 2cos(x/h), where 
h is the Coxeter number of the algebra For the affine algebras the largest eigenvalue is 
2. The respective values of h, and the largest eigenvectors are given in table 1 for each 
algebra In the case of dense RSOS models, we also allow for non-simple connected graphs. 
However, none of the graphs with largest eigenvalue < 2, leads to intrinsically new models, 
as they can always be viewed as one of the simple graphs where a Z, symmetry is modded 
out, see figure 5. 

S 0 Warnaar and B Nienhuis 

Classical Affine 

DL 1 2 3  .-<I, D2, ;>-< 3 4  

€6 2 . L -  E!) L 1 2 3 4 5  

L-l 

I 2 3 4 5  

8 
E$'). 2 z ! :  

1 2 3 4 5 6 7  
€7 'I 

1 2 3 4 5 6  

8 9  9 t  
Et) 

1 2 3 4 5 6 7 8  
E8 I 

I 2 3 4 5 6 7  

Figure 4. Dynliin diagrams of the simply laced Lie algebras. 

Figure 5. Non-simple connected graphs with largest eigenvalue 4 2 
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Table 1. Coxeter number and largest eigenvector of W simply laced Lie algebras. 
~ ~ 

Algebra h Perron-Frohius vector 
AL L + I  ( s inz .s in  U 2iT k.....sinT) LiT 

E6 12 (sin:. . _ .  , sin 

E8 12 (sin :, ..., sin 

7r ( L - 2 ) r r  
Z L  - 2  (zsins; ,..., zsin-. I,  I h DL 

3iT . 5R 

E7 12 (sin f . ..., sin 

A:!, L (1. 1. .... I )  

e!) 
DgLl 2 L - 6 . '  (1 .1 .2  ...., 2.1.1) 

E:' 6 (I.  2.3.2. I .  2.1) 
12 (1.2.3.4.3,2,1.2) 
30 '~ (1.2.3.4.5.6.4.2.3) E? 

7. Off-critical models 

It is well known that all critical A-D models based on the TL loop model admit an extension 
away from criticality while remaining solvable. The off-critical models based on the classical 
Lie algebra AL for example, are the models of Andrews et a1 [14]. 

Recently, the off-critical extension of the dilute A' models based on the O(n) model was 
found [4]. As an interesting feature, these models break the & symmetry of the underlying 
Dynkin diagrams, when L is odd. 

A natural question therefore is: which of the new A-D-E models presented in section 4, 
admit an extension away from criticality? So far, we have not studied this problem in any 
systematic way. However, for the C;' RSOS model based on the Lie algebra pair (AL.&), 
the extension can easily be found by making the appropriate transformations to the e' SOS 
model of Jimbo et a1 [IS]. 

The result involves the 9-functions [I61 
m 

+ ] ( U )  = 2 p ' / 4 s i n u n ( l  -2phcos2u+ p4")(1 - p h )  
"=I 

where we have suppressed the dependence on the nome p .  IpI < 1. If we also define the 
unit vectors el = (1,O) and e2 = (0, l), and use the notation e-, = -e,, a-, = -a,, 
f i  = kl, 5'2, where a = (ai ,  az), then the Boltzmann weights read 
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S(a + e,)S(a - e,) 41 (U) 64(a,A - a,A - 2A + U )  

61(3A) 64(a,h - a,h +A) 
S(a + e,) *](U) 61(2a,A - 2A + U) 

a + e ,  a S(a) 61 (3A) 61 (2a,A +A) 
4l (3h - U) 61 (2a,A + A + U) 

61 (3h) 81 (&,A + A) 
+ 

64(a,h - aJ - h) 6'4(a,h - a,A +A) I" 61 (U) 61 (3A - U) 
@(a& - aJ) ) 81 (A) 61 (31) 

S(a) = (-)'I + az6~ (2alh) 61(2qA) 64(ali - azh) 6,t(alA + azh) 

where w # zkp and 

(7.3) 

The precise relation between the above RSos model and the Cy' SOS model of Jimbo 
et ai is actually very simple. Starting from their model we first set n u / L  -+ -U and 
n/L -+ A. The heights of the C:" SOS model are confined to 

(7.4) a = Zel +Zez +ao 

where a0 is an arbitrary two-dimensional vector. We choose a0 = (nr/(2h) ,  0),  with r 
defined as p = exp(inr), and set 

kn 
2(L + 1) k = 1 ,  ..., L .  A =  (7.5) 

As a result, the SOS model with heights a; (i = 1.2) restricted to 1, . . . , L still satisfies the 
YBE. For the choice k = L we arrive at the Cy) RSOS model of equation (7.2) and (7.3). 
Other choices of k yield unphysical Boltmann weights. This corresponds to models based 
on eigenvalues of the adjacency matrix other than the largest. 

Like the ABF model, there 2re four different physical regimes: 

0 < ~ < 3 h - n  t l = - t Z = l  

(7.6) 
3h - 2n < U < 0 E ,  = -Ez = -1. 

o < p < 1  
- 1 < p < o  

o < p < 1  
- l < p < O  I 

We note that, away from criticality, the above models break the Z, symmetry of the 
underlying Dynkin diagrams, when L is odd. If we define & = L + 1 - ai, we have 

and similarly for the second component. We do, however, retain the symmetry 

(7.8) 
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8. Summary and discussion 

We'have established a graphical equivalence between RSOS and loop models. In particular, 
we have applied this equivalence to solvable loop models and, as a result, found new 
families of critical RSOS models. These new models can all be classified in terms of Dynkin 
diagrams of the simply laced Lie algebras, the so-called A-D-E algebras. Furthermore, 
we have indicated how to extend the equivalence to models that are of mixed loopvertex 
type. Finally, an off-critical extension of the Cy) ~sos model based on the Dynkin diagram 
pair (AL,AL) is given. This extension, which involves elliptic t9-functions, breaks the 
symmetry of the underlying Dynkin diagrams. 

Obvious generalizations of the ideas presented in this paper are as follows. 
(i) The extension to directed adjacency graphs, see, e.g. [18]. 
(ii) The study of loop models that admit multiple occupation of edges. That is, each 

edge of the lattice can be occupied by more than one polygon segment, provided that all 
segments have different colour. Clearly the MCL-RSOS equivalence of section 3.2 still holds. 

(iii) The extension to higher spin RSOS models, where we view the dense and dilute 
RSOS models as spin-4 and spin-1 models respectively. 

(iv) The mapping of loop models onto RSOS-vemx or RSOS-SOS models. In section 3.2 
we have shown how a loop model can be mapped onto an RSOS model by identifying the 
fugacity ni of a loop of colour i with the largest eigenvalue A; of an adjacency matrix A'. 
In section 5 we have shown how a loop model can be mapped onto a vertex model by setting 
n; = si" + s,r4, where the phase factor si (s;') is associated with a directed loop making a 
turn to the left (right). Combining these two mappings, choosing ni = A&+sF4), we can 
map a loop model onto an RSOS-Vertex model or RSOSSOS model. We note that this type 
of RSOS-SOS model is altogether different from the RSOSSOS models defined in section 5. 
We hope to report a study of these generalizations in future publications. 

An intfiguing open problem [I51 is the relation between the critical A:'), Bk'), CL'), Dt'. 
A E  and AZL, RSOS models found in I151 and [I91 and their vertex counterparts given in 
[IO]. For some of these models, notahly the AY', Cy' and 4') models, the Ma-RSOS 
equivalence does provide a link between the RSOS and vertex representations. It remains 
unclear, however, how to~extend the methods of this paper to establish the RSOS-Vertex 
correspondence in general. 
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Appendix A. Yang-Baxter equation for the MCL and RSOS models 

The equivalence between the MCL and RSOS model holds irrespective of the solvability of 
the models. In this appendix we show, however, that a sufficient condition for the YE% 
equation of the RSOS model to hold is that the corresponding M U  model satisfies the YBE. 
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A.1 . I .  Yang-Barter equation for loop models 

Although loop models are. intrinsically non-local, one can nevertheless formulate a local 
condition or Y8E for two transfer matrices to commute [8]. (For a definition of the transfer 
matrix for loop models, see e.g. [17].) In order to define this equation we need some 
preliminaries. 

Consider an object U with p external edges, labelled 1,. . . , p, as shown in figure Al. 
Edges of U can either be empty or occupied by a coloured polygon segment. Each edge 
that is occupied is, via the interior of U, connected to one other edge that is occupied by a 
line segment of equal colour. The index a k  contains the following information: (i) whether 
edge k is occupied by a polygon segment of given colour; and (ii) if so, to which other 
edge it is connected. The information contained in all a1 , . . . , ap is called the connectivity 
of 0 = O(a1,. ..,ap) and denoted by Co. The object U has a weight W(0). 

S 0 W a r m  and B Nienhuis 

. . .  

Figure Al.  An object with p cxtemal edges. 

By the contraction of A and 5 to the composite object D 

x A ( a i , .  . . Uk. P i ,  . . . , Pi)B(Bi.. . . . B m .  PI, . . . , pi) = D(ai.. . . . ak, PI . .  . . , &) 
C.C 

(-4.1) 

we glue together the edges of A and 5 that carry the same index and sum over all 
connectivities of A and B consistent with CD. Here it is to be understood that in the 
argument of A and of B still signify two different things. We use the repeated occurrence 
of the labels only to indicate that the edge of A that carries the index pi is glued to the 
edge of B that carries that same index. Furthermore, it implies that edges which are glued 
together must be occupied by a polygon segment of the same colour. Finally it means that 
if the edge of A (5) carrying the index pi is occupied and connected to, say, the edge of 
A (5) carrying the index aj ( B k )  then the edges of D carrying the indices aj and j3k are 
connected. 

The weight W(D) is defined as 

where pi is the number of polygons of colour i that are closed by gluing together A and B. 
An elementary vertex of the MCL model has four extemal edges. Because the Boltzmann 

weight W of a vertex V is completely determined by its connectivity, we can write 
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Pire AZ. Graphical representation of the conhaction of A and 8. 

With the above definitions, the YBE equation for the MCL model may be written as 

and must be satisfied for all possible connectivities CYBE(~,...,~). In other words, not only 
do we fix the occupation of the external edges, but we also fix to which other external edge 
an occupied edge is connected. If one of the terms in the above equation has an internal 
loop of colour i this yields a factor ni. 

0.2. Ymg-Batter equation for the RSOS model 

To show that if the YBE for the MCL model is satisfied, it also holds for the RSOS model, 
we begin with the YBE for the RSOS model [l] 

( A . 9  

This equation must hold for all values of the extemal height vectors, with ni, . . . , gi E 
( I , .  . . , Li}. We substitute the definition of the weights W, W' and W", where W' and W" 
are given by (3.3) with pk replaced by pi and pi ,  and expand both sides of the YBE into 
V 3  terms. We then use the factorization (3.2) and perform the trivial summation over the 
6-functions. As a result, most terms in the expansion no longer contain the variable g;. 
Only terms for which the internal site differs in height from all its three neighbouring sites, 
which in that case all have equal height, yield a gi dependent factor of the form S, I&,. 
Here gi and a; are the ith height components of the centre site and its neighbouring sites 
respectively, and ai - gi, aj = gj j # i. Performing the sum over gi yields a factor Ai. 
see equation (3.10). We now group together all terms which have the same dependence 
on the vectom Si. If we demand that the resulting equation holds for any arbitrary set of 
graphs {GI, . . . , GI, a sufficient and presumably necessary condition is that each group of 
terms vanishes independently. If we draw domain walls (of the appropriate colour) between 
regions of different height, terms within the same group all have the same connectivity. 
Furthermore, a tetm with an internal loop of colour i contributes an extra factor Ai. As a 
result we find, upon setting Ai = ni, that each group yields precisely one of the equations 
of the YBE for the M U  model. 
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